641 research outputs found

    A Navier Stokes Phase Field Crystal Model for Colloidal Suspensions

    Full text link
    We develop a fully continuous model for colloidal suspensions with hydrodynamic interactions. The Navier Stokes Phase Field Crystal (NS-PFC) model combines ideas of dynamic density functional theory with particulate flow approaches and is derived in detail and related to other dynamic density functional theory approaches with hydrodynamic interactions. The derived system is numerically solved using adaptive finite elements and used to analyse colloidal crystallization in flowing environments demonstrating a strong coupling in both directions between the crystal shape and the flow field. We further validate the model against other computational approaches for particulate flow systems for various colloidal sedimentation problems

    Electronic tuneability of a structurally rigid surface intermetallic and Kondo lattice: CePt5_5 / Pt(111)

    Get PDF
    We present an extensive study of structure, composition, electronic and magnetic properties of Ce--Pt surface intermetallic phases on Pt(111) as a function of their thickness. The sequence of structural phases appearing in low energy electron diffraction (LEED) may invariably be attributed to a single underlying intermetallic atomic lattice. Findings from both microscopic and spectroscopic methods, respectively, prove compatible with CePt5_5 formation when their characteristic probing depth is adequately taken into account. The intermetallic film thickness serves as an effective tuning parameter which brings about characteristic variations of the Cerium valence and related properties. Soft x-ray absorption (XAS) and magnetic circular dichroism (XMCD) prove well suited to trace the changing Ce valence and to assess relevant aspects of Kondo physics in the CePt5_5 surface intermetallic. We find characteristic Kondo scales of the order of 102^2 K and evidence for considerable magnetic Kondo screening of the local Ce 4f4f moments. CePt5_5/Pt(111) and related systems therefore appear to be promising candidates for further studies of low-dimensional Kondo lattices at surfaces.Comment: 14 pages, 11 figure

    Quality Control During Aminoacyl-tRNA Synthesis

    Get PDF
    The fidelity of translation is determined at two major points: the accuracy of aminoacyl-tRNA selection by the ribosomes and synthesis of cognate amino acid/tRNA pairs by aminoacyl-tRNA synthetases (aaRSs) in the course of the aminoacylation reaction. The most important point in aminoacylation is the accurate recognition of cognate substrates coupled with discrimination of non-cognates. While this is generally accomplished by a single enzyme, we have recently found that discrimination against lysine analogues requires the existence of two unrelated lysyl-tRNA synthetases. For other amino acids, initial recognition is not sufficiently accurate with errors being corrected by an intrinsic editing activity. Recent studies indicate how editing prevents the misinterpretation of phenylalanine as tyrosine in the genetic code and have shown the importance of this process in vivo . More recent studies indicate that while these editing reactions are critical in the cytoplasm, some are absent from mitochondria suggesting that the overall idelity of protein synthesis might be reduced in this compartment

    Convergence of simple adaptive Galerkin schemes based on h − h/2 error estimators

    Get PDF
    We discuss several adaptive mesh-refinement strategies based on (h − h/2)-error estimation. This class of adaptivemethods is particularly popular in practise since it is problem independent and requires virtually no implementational overhead. We prove that, under the saturation assumption, these adaptive algorithms are convergent. Our framework applies not only to finite element methods, but also yields a first convergence proof for adaptive boundary element schemes. For a finite element model problem, we extend the proposed adaptive scheme and prove convergence even if the saturation assumption fails to hold in general

    Long-term variations in Iceland–Scotland overflow strength during the Holocene

    Get PDF
    The overflow of deep water from the Nordic seas into the North Atlantic plays a critical role in global ocean circulation and climate. Approximately half of this overflow occurs via the Iceland–Scotland (I–S) overflow, yet the history of its strength throughout the Holocene (~ 0–11 700 yr ago, ka) is poorly constrained, with previous studies presenting apparently contradictory evidence regarding its long-term variability. Here, we provide a comprehensive reconstruction of I–S overflow strength throughout the Holocene using sediment grain size data from a depth transect of 13 cores from the Iceland Basin. Our data are consistent with the hypothesis that the main axis of the I–S overflow on the Iceland slope was shallower during the early Holocene, deepening to its present depth by ~ 7 ka. Our results also reveal weaker I–S overflow during the early and late Holocene, with maximum overflow strength occurring at ~ 7 ka, the time of a regional climate thermal maximum. Climate model simulations suggest a shoaling of deep convection in the Nordic seas during the early and late Holocene, consistent with our evidence for weaker I–S overflow during these intervals. Whereas the reduction in I–S overflow strength during the early Holocene likely resulted from melting remnant glacial ice sheets, the decline throughout the last 7000 yr was caused by an orbitally induced increase in the amount of Arctic sea ice entering the Nordic seas. Although the flux of Arctic sea ice to the Nordic seas is expected to decrease throughout the next century, model simulations predict that under high emissions scenarios, competing effects, such as warmer sea surface temperatures in the Nordic seas, will result in reduced deep convection, likely driving a weaker I–S overflow

    Mechanical oscillations of magnetic strips under the influence of external field

    Get PDF
    This is the final version of the article. Available from EDP Sciences via the DOI in this record.JEMS 2012 – Joint European Magnetic SymposiaBy application of a magnetic field on an amorphous metallic strip, the orientation of magnetization of Weiss domains can be changed. When the strip changes its length, this effect is called magnetostriction. We simulate this effect using a finite element method. In particular we calculate the change of the mechanical resonance frequency of a magnetic platelet as a function of the applied field. This gives a quantitative model of the influence of the applied magnetic field on the effective Young's Modulus of the material. © 2013 Owned by the authors, published by EDP Sciences

    Simultaneous quantification of 12 different nucleotides and nucleosides released from renal epithelium and in human urine samples using ion-pair reversed-phase HPLC

    Get PDF
    Nucleotides and nucleosides are not only involved in cellular metabolism but also act extracellularly via P1 and P2 receptors, to elicit a wide variety of physiological and pathophysiological responses through paracrine and autocrine signalling pathways. For the first time, we have used an ion-pair reversed-phase high-performance liquid chromatography ultraviolet (UV)-coupled method to rapidly and simultaneously quantify 12 different nucleotides and nucleosides (adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, adenosine, uridine triphosphate, uridine diphosphate, uridine monophosphate, uridine, guanosine triphosphate, guanosine diphosphate, guanosine monophosphate, guanosine): (1) released from a mouse renal cell line (M1 cortical collecting duct) and (2) in human biological samples (i.e., urine). To facilitate analysis of urine samples, a solid-phase extraction step was incorporated (overall recovery rate ? 98 %). All samples were analyzed following injection (100 ?l) into a Synergi Polar-RP 80 Å (250 × 4.6 mm) reversed-phase column with a particle size of 10 ?m, protected with a guard column. A gradient elution profile was run with a mobile phase (phosphate buffer plus ion-pairing agent tetrabutylammonium hydrogen sulfate; pH 6) in 2-30 % acetonitrile (v/v) for 35 min (including equilibration time) at 1 ml min(-1) flow rate. Eluted compounds were detected by UV absorbance at 254 nm and quantified using standard curves for nucleotide and nucleoside mixtures of known concentration. Following validation (specificity, linearity, limits of detection and quantitation, system precision, accuracy, and intermediate precision parameters), this protocol was successfully and reproducibly used to quantify picomolar to nanomolar concentrations of nucleosides and nucleotides in isotonic and hypotonic cell buffers that transiently bathed M1 cells, and urine samples from normal subjects and overactive bladder patients

    tRNAs: Cellular Barcodes for Amino Acids

    Get PDF
    The role of tRNA in translating the genetic code has received considerable attention over the last 50 years, and we now know in great detail how particular amino acids are specifically selected and brought to the ribosome in response to the corresponding mRNA codon. Over the same period, it has also become increasingly clear that the ribosome is not the only destination to which tRNAs deliver amino acids, with processes ranging from lipid modification to antibiotic biosynthesis all using aminoacyl‐tRNAs as substrates. Here we review examples of alternative functions for tRNA beyond translation, which together suggest that the role of tRNA is to deliver amino acids for a variety of processes that includes, but is not limited to, protein synthesis

    Interleukin-1β sequesters hypoxia inducible factor 2α to the primary cilium.

    Get PDF
    BACKGROUND: The primary cilium coordinates signalling in development, health and disease. Previously we have shown that the cilium is essential for the anabolic response to loading and the inflammatory response to interleukin-1β (IL-1β). We have also shown the primary cilium elongates in response to IL-1β exposure. Both anabolic phenotype and inflammatory pathology are proposed to be dependent on hypoxia-inducible factor 2 alpha (HIF-2α). The present study tests the hypothesis that an association exists between the primary cilium and HIFs in inflammatory signalling. RESULTS: Here we show, in articular chondrocytes, that IL-1β-induces primary cilia elongation with alterations to cilia trafficking of arl13b. This elongation is associated with a transient increase in HIF-2α expression and accumulation in the primary cilium. Prolyl hydroxylase inhibition results in primary cilia elongation also associated with accumulation of HIF-2α in the ciliary base and axoneme. This recruitment and the associated cilia elongation is not inhibited by blockade of HIFα transcription activity or rescue of basal HIF-2α expression. Hypomorphic mutation to intraflagellar transport protein IFT88 results in limited ciliogenesis. This is associated with increased HIF-2α expression and inhibited response to prolyl hydroxylase inhibition. CONCLUSIONS: These findings suggest that ciliary sequestration of HIF-2α provides negative regulation of HIF-2α expression and potentially activity. This study indicates, for the first time, that the primary cilium regulates HIF signalling during inflammation
    corecore